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S A,(t,7,,8,~(8),c,*,mf)dr<~, VrtE[0,81, i-1,2,8 
0 

Therefore the capture of the pursued is possible in the present game only when the instant 
switchover ri E (0, a]., e.g. zi = r (L = i, 2, 3). 
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ON CONSTRUCTING A FUNCTIONAL IN THE PROBLEM OF OPTIMAL CONTROL* 

7X. KH. BAIMURZAXEVA 

The problem of constructing a functional in the theory of control of 
material systems is considered as an inverse problem of dynamics /l/. It 
was A.M. Letov /2/ who first became aware of the practical value of the 
inverse problems in optimal control. He solved a number of inverse 
problems of choosing the optimal functional in problems of controlling 
aircraft. The approach was also successfully used in problems of robotics 
/3/. The procedure used in solving inverse problems makes it possible to 
combine the merits and virtues of the engineering problems based on 
formulating the control laws from the conditions of motion according to 
a given program, with the possibilities offered by methods of optimal 
control theory. 

Let us consider a controlled object described by a system 
equations 

2' = f (z, U, t), I E R”, u E R’ 

where f is a continuously differentiable vector function, u is 
and o<t<T. The initial condition a==(O) and time T will be 
the pair (u(r),=(t)) the admissible process, if u(t),=(t) satisfy 

We shall treat the inverse problem of optimal control for 

of ordinary differential 

(1) 
a piecewise continuous control 
assumed given. We shall call 
(1) * 
the object in question as a 

problem of determining a continuously differentiable function f,,(s,u), such that the solution 
of the problem of maximizing the functional 

J&Z, lb)& (2) 
0 

leads to the given admissible process (u*(t),z*(t)j. 
Let us write the unknown function fo(z,u) as the sum of the continuously differentiable 

functions ~~(2, U)(I = 1, 2,...,p) in the form 

In this case the inverse problem of optimal control will be reduced to finding all 
coefficients ~‘(8 = i, 2.. ..,p), such that the maximization of the functional 

(3) 

when (1) is satisfied, leads to the given admissible process (u*(t).z* (1)). O<t< T. 
In order to exclude the trivial case where all coefficients cI are zero (in this case 

any admissible process will be optimal for a functional identically equal to zero), we shall 
introduce the concept of a non-degenerate solution of the inverse problem: we will call the 
solution of the inverse problem non-degenerate, if at least one of the coefficients E, is not 
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zero. 
Let us assume that the coefficients solving the inverse problem have been found. Then 

the conditions of the L.S. Pontryagin maximum principle /4/ will represent the necessary 
conditions of optimality of the given admissible process {u*,(t),z*(t)),O<t( T functional (3) 
when (1) is satisfied. These conditions are: if (u+(t),z*(t)} is an optimal process, then there 
exists a non-zero solution of the system of conjugate equations 

with the boundary conditions *l(T)=0 (I= 1,2, . . ..n). such, that 

In the present case (the set of admissible controls is open) from (4) it follows that 

(4) 

(5) 

where the asterisk indicates that the values of the arguments of the derivatives are chosen 
on the trajectory (u* (t), Z* (t)). 

Let us consider the homogeneous system of equations 

rD,.(I)=-&(f)y- (I=i,Z,...,n) 
v-1 

(6) 

We denote the fundamental matrix of solutions of (6), which becomes a unit matrix at a 
given value of transition time t= T, by V(t). Then the solution of system (4) with prescribed 
initial condition can be written in the form P(t)='FY,(t)c where V (t) = (4% ($9~ (0, . . :, 9, (t))= is 
the column vector of conjugate variables, c=(c~,c~,...,c~)' is a column vector with the unknown 
coefficients of the functional (3) serving as the coordinates, and the matrix Ye(t) has the 
form 

‘P,(t)-V(t)STV-l(t)*~(t)dt 
0 

with the matrix D+(t) appearing in it given by 

We shall also introduce the matrices defined over the given process (u*(t),z*(t)), in the 

form 

@&)=[$+I, FJt)=[~] (i=l,2,...,r; 

v= 1,2, . . , R). 

Eq.(5), in the above notation, takes the form 

o)u (L) c + FU V) 'y (t) = 0 

Substituting the solution for Y(t) found into the relation obtained, we arrive at the 
equation 

K (L) E = 0, e = (Cl, C*, . . ., c&J=, K (f) = Ikjel = '% (0 + FU (t) 'l', (0 (5) 

We shall formulate the result obtained in the form of a theorem, assuming that the 
conditions imposed on the function f,cp,, given in the beginning, are satisfied. 

Theorem 1. Any solution oftheinverse problem of optimal control (l), (3) will be, at 

OdtdT, a solution of the system of linear homogeneous Eqs.(S). If the functions kjl (07 
k;p(t),...,kjp(f) are linearly independent, for some Idf<r, then the inverse problem has no 
degenerate solutions. 

To determine the possible values of the coefficients satisfying system (8), we will 
consider the i-th equation of this system, which has the form 

kil (t) ~1 + kia (t) ~2 + . . + kip (t) up = 0 (i = 1, 2, . ., r). (9) 
Introducing the scalar product 

(x(t), r(t)) =&(')~(t)dt 
0 

we multiply Eqs.(9), one after the other, by kiI(t),kir(t),...,kip(f). This yields a system of 
linear homogeneous equations. Let us denote the matrices of these systems (Gram matrices of 

the system of functions kil (t), kio (t), . . ., kip(t) in the interval (0, T)) by ri, and write them in the 



form 
ric = 0 

Let us consider the first system of (10). Let h= rankr,. The general solution 
(10) is obtained in the form c= R,W,. where ZU,ER~* and the columns of the matrix 
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(10) 

of system 
R1 represent 

the fundamental system of solutions of (10). If the rank of h is p, then the system in 
question has no non-zero solutions andtheinverse problem has no degenerate solutions. 

Let us suppose that a vector c is found, satisfying j(i (j(r) systems of homogeneous 
Eqs.(lO), i.e. that a matrix Rj is known in the representation of the solution 

E = R,Wj (ii) 

for an arbitrary vector 3. Substituting (11) into the (j+i)-th equation of (lo), we obtain 
a linear homogeneous system for determining the vector wjsuch that the vector c will be a 
solution of not only the j-th system, but also of the (j+i)-th system of (10) of the form 

rj+lR;Uj = 0 (12) 

Having found the general solution of (12) in the form Wj= WjWj+, (columns of the matrix 
Wj represent the fundamental system of solutions and wj+l is an arbitrary vector), we obtain 
the solution for the (j-t-*)-th system of (10) in the form 

c = Rj+lwj+lT Rj+l = RjWj 

Writing, consecutively, j=i,2 ,...,rl we finally obtain c= R++. The formula obtained solves 
the problem of determining all vectors c satisfying the necessary conditions of optimality. 
If we find for some j= i,2,..., r-i that system (12) has no solution apart from the trivial 
one, then the inverse problem has no degenerate solutions. 

Let us consider the same controlled obuect described by the system of Eqs.(l) with given 
initial condition a==(O) and known transition time T. We shall now assume that the following 
constraints are imposed on the controls u,(t)(j= 1,2, . . ..r). 

Qj < uj (t) < Bjv 0 < t d T (13) 

We define the inverse problem of optimal control for such an object as the problem of 
determining the coefficients c~(s= 1,2,..., p) in the functional (3) such that the maximization 
of this functional, when (l), (13) are satisfied, leads to the given process {u* (:),z* (t)). In 
the present case condition (5) is no longer than necessary condition for the maximum of the 
Hamilton function on the optimal control, and in order to formulate such a condition we shall 
find, using the given admissible process and the constraints (13), the sets 

2'ja = (t I uj (t) = aj)s Tjp = (t 1 Uj (t) = fij)* Tj = (t 1 OLj < Uj (t) < fij) 
t E (0, TJ, j = 1, 2, . . ., r 

We shall assume that for every j= 1.2, . . ..r the sets Tja, TjB. Tj introduced above are 
either empty, or that they can be written in the form of a union of a finite number of pair- 
wise intersecting intervals T,ka9 Tj#, Tjr, i.e. the following expansion holds: 

a 
Tja = "; I?. 

P 
k=l Jh' Tj' = :I1 J'fh* 

Tj= 2 T. 
k-=1 lk 

T% = (t 1 tg) < t < tjy”), Tfk = (t It;p’ < t < t$‘) 

Tjk = {f If$ < f < t$} 

Using the above assumptions we shall formulate the necessary conditions for the 
. coefficients c,, c~,. ..,cp to solve the given inverse problem of optimal control. 

Theorem 2. Let the coefficients c~,c~, . . ..cp he a solution of the inverse problem of 
optimal control with constraints (13), for the given admissible process (u*(t),z*(t)). Then the 
coefficients will satisfy the relations 

I = 0, t E Tj; I: < 0, t E Tja (14) 

I > 0, t E Tj”; X = $ kjs (t) ~8 
s=x 

in which the coefficients kj,(t) have the form 

kj, (f) = ~+~wt,[~] 
Y=l 

(15) 

The elements qV,c(t) of the matrix P,(t) are found from its expression 
T 

V,(f) = Y (f)S F’(f) fDx,qcft (‘6) 
0 

where ‘P(t) is the fundamental matrix of solutions of the system of homogeneous differential 
Eqs.(S) , becoming a unit matrix when t= T, and rn, (t) is the matrix (7). 

Proof. The necessary conditions of optimality of the process (u* (t),z*(t)) for the 
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functional (3), when conditions (13) are satisfied, can be formulated as follows: if the 
admissible process (u*(t),z*(t)) is optimal, then there exists a non-zero solution of the system 
of conjugate equations 

*.(‘)=-~*“(~)[~]-~c,[~] 
v=1 ‘=I 

9,,(T) =o, 1 = 1, 2, . . . . n 

such, that for all, apart from a finite number of values of t(O<t<T), the following 
relations hold: 

E = 0. f E T,; E < 0, t E TpL; E >, 0, t E Tj' (18) 

E= 

Relations (18) represent the Kuhn-Tucker conditions for the Hamilton function to attain 
its maximum on the optimalcontrol,and can be obtained from theorem 4.14 /5/ for the type of 
constraints imposed on the controls considered here. 

The solution of the system of differential Eqs.(17) with the boundary conditions shown, 
has the form 

y (t) = $e (t) c (19) 
where the notation of (16) and (7) is used. 

The matrix u(t) appearing here is the fundamental matrix of solutions of system (17), 
becoming a unit matrix when t= T, Y(t)=(q,(f), 08 (0. . . .*%I (UT, c = (Cl, c*, . . ., cg. 

Subsituting (19) into (18) and using the notation (15), we arrive at the statement of 
the theorem. 

Corollary. Suppose, for some IE(~, 2,...,r} and kE(l,2, . . . . flj), the system of functions 
kjl (07 kjz (t), . . ., kjp (t) is linearly independent in the interval Tjk. Then the inverse problem has 
no non-degenerate solutions. 

Note. In some cases the inverse problem is formulated as the problem of finding the non- 
negative coefficients cs>O in the functional (3). clearly, in this case the necessary 
condition of optimality of existence of the non-degenerate solution formulated in the statement 
of 

1. 
2. 
3. 
4. 

5. 

the theorem will also hold. 
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